Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Proteins ; 2023 Jun 07.
Article in English | MEDLINE | ID: covidwho-20234108

ABSTRACT

The RNA-dependent RNA polymerase (RdRp) complex of SARS-CoV-2 lies at the core of its replication and transcription processes. The interfaces between holo-RdRp subunits are highly conserved, facilitating the design of inhibitors with high affinity for the interaction interface hotspots. We, therefore, take this as a model protein complex for the application of a structural bioinformatics protocol to design peptides that inhibit RdRp complexation by preferential binding at the interface of its core subunit nonstructural protein, nsp12, with accessory factor nsp7. Here, the interaction hotspots of the nsp7-nsp12 subunit of RdRp, determined from a long molecular dynamics trajectory, are used as a template. A large library of peptide sequences constructed from multiple hotspot motifs of nsp12 is screened in-silico to determine sequences with high geometric complementarity and interaction specificity for the binding interface of nsp7 (target) in the complex. Two lead designed peptides are extensively characterized using orthogonal bioanalytical methods to determine their suitability for inhibition of RdRp complexation. Binding affinity of these peptides to accessory factor nsp7, determined using a surface plasmon resonance (SPR) assay, is slightly better than that of nsp12: dissociation constant of 133nM and 167nM, respectively, compared to 473nM for nsp12. A competitive ELISA is used to quantify inhibition of nsp7-nsp12 complexation, with one of the lead peptides giving an IC50 of 25µM . Cell penetrability and cytotoxicity are characterized using a cargo delivery assay and MTT cytotoxicity assay, respectively. Overall, this work presents a proof-of-concept of an approach for rational discovery of peptide inhibitors of SARS-CoV-2 protein-protein interactions.

2.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: covidwho-1672235

ABSTRACT

Depletion of CpG dinucleotides in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genomes has been linked to virus evolution, host-switching, virus replication, and innate immune responses. Temporal variations, if any, in the rate of CpG depletion during virus evolution in the host remain poorly understood. Here, we analyzed the CpG content of over 1.4 million full-length SARS-CoV-2 genomes representing over 170 million documented infections during the first 17 months of the pandemic. Our findings suggest that the extent of CpG depletion in SARS-CoV-2 genomes is modest. Interestingly, the rate of CpG depletion is highest during early evolution in humans and it gradually tapers off, almost reaching an equilibrium; this is consistent with adaptations to the human host. Furthermore, within the coding regions, CpG depletion occurs predominantly at codon positions 2-3 and 3-1. Loss of ZAP (Zinc-finger antiviral protein)-binding motifs in SARS-CoV-2 genomes is primarily driven by the loss of the terminal CpG within the motifs. Nonetheless, majority of the CpG depletion in SARS-CoV-2 genomes occurs outside ZAP-binding motifs. SARS-CoV-2 genomes selectively lose CpGs-motifs from a U-rich context; this may help avoid immune recognition by TLR7. SARS-CoV-2 alpha-, beta-, and delta-variants of concern have reduced CpG content compared to sequences from the beginning of the pandemic. In sum, we provide evidence that the rate of CpG depletion in virus genomes is not uniform and it greatly varies over time and during adaptations to the host. This work highlights how temporal variations in selection pressures during virus adaption may impact the rate and the extent of CpG depletion in virus genomes.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Genome, Viral , Humans , Pandemics , SARS-CoV-2/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL